Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 9: 213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27766117

RESUMO

BACKGROUND: Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/days continuous reactor. The reactor systems examined were an automated solvent extractor (ASE), steam explosion reactor (SER), ZipperClave®Reactor (ZCR), and large continuous horizontal screw reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions and at different reactor scales. RESULTS: The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. The maximum total sugar yields for the ASE and LHR were [Formula: see text], while [Formula: see text] was the optimum observed in the ZipperClave. CONCLUSIONS: The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was within the near-optimal space for total sugar yield for the LHR. This indicates that the ASE is a good tool for cost effectively finding near-optimal conditions for operating pilot-scale systems. Additionally, using a severity factor approach to optimization was found to be inadequate compared to a multivariate optimization method. Finally, the ASE and the LHR were able to enable significantly higher total sugar yields after enzymatic hydrolysis relative to the ZCR, despite having similar optimal conditions and total xylose yields. This underscores the importance of mechanical disruption during pretreatment to improvement of enzymatic digestibility.

2.
Biotechnol Biofuels ; 7(1): 23, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24548527

RESUMO

BACKGROUND: Dilute acid pretreatment is a promising process technology for the deconstruction of low-lignin lignocellulosic biomass, capable of producing high yields of hemicellulosic sugars and enhancing enzymatic yields of glucose as part of a biomass-to-biofuels process. However, while it has been extensively studied, most work has historically been conducted at relatively high acid concentrations of 1 - 4% (weight/weight). Reducing the effective acid loading in pretreatment has the potential to reduce chemical costs both for pretreatment and subsequent neutralization. Additionally, if acid loadings are sufficiently low, capital requirements associated with reactor construction may be significantly reduced due to the relaxation of requirements for exotic alloys. Despite these benefits, past efforts have had difficulty obtaining high process yields at low acid loadings without supplementation of additional unit operations, such as mechanical refining. RESULTS: Recently, we optimized the dilute acid pretreatment of deacetylated corn stover at low acid loadings in a 1-ton per day horizontal pretreatment reactor. This effort included more than 25 pilot-scale pretreatment experiments executed at reactor temperatures ranging from 150 - 170°C, residence times of 10 - 20 minutes and hydrolyzer sulfuric acid concentrations between 0.15 - 0.30% (weight/weight). In addition to characterizing the process yields achieved across the reaction space, the optimization identified a pretreatment reaction condition that achieved total xylose yields from pretreatment of 73.5% ± 1.5% with greater than 97% xylan component balance closure across a series of five runs at the same condition. Feedstock reactivity at this reaction condition after bench-scale high solids enzymatic hydrolysis was 77%, prior to the inclusion of any additional conversion that may occur during subsequent fermentation. CONCLUSIONS: This study effectively characterized a range of pretreatment reaction conditions using deacetylated corn stover at low acid loadings and identified an optimum reaction condition was selected and used in a series of integrated pilot scale cellulosic ethanol production campaigns. Additionally, several issues exist to be considered in future pretreatment experiments in continuous reactor systems, including the formation of char within the reactor, as well as practical issues with feeding herbaceous feedstock into pressurized systems.

3.
Biotechnol Biofuels ; 6(1): 162, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24229321

RESUMO

BACKGROUND: The rapid determination of the release of structural sugars from biomass feedstocks is an important enabling technology for the development of cellulosic biofuels. An assay that is used to determine sugar release for large numbers of samples must be robust, rapid, and easy to perform, and must use modest amounts of the samples to be tested.In this work we present a laboratory-scale combined pretreatment and saccharification assay that can be used as a biomass feedstock screening tool. The assay uses a commercially available automated solvent extraction system for pretreatment followed by a small-scale enzymatic hydrolysis step. The assay allows multiple samples to be screened simultaneously, and uses only ~3 g of biomass per sample. If the composition of the biomass sample is known, the results of the assay can be expressed as reactivity (fraction of structural carbohydrate present in the biomass sample released as monomeric sugars). RESULTS: We first present pretreatment and enzymatic hydrolysis experiments on a set of representative biomass feedstock samples (corn stover, poplar, sorghum, switchgrass) in order to put the assay in context, and then show the results of the assay applied to approximately 150 different feedstock samples covering 5 different materials. From the compositional analysis data we identify a positive correlation between lignin and structural carbohydrates, and from the reactivity data we identify a negative correlation between both carbohydrate and lignin content and total reactivity. The negative correlation between lignin content and total reactivity suggests that lignin may interfere with sugar release, or that more mature samples (with higher structural sugars) may have more recalcitrant lignin. CONCLUSIONS: The assay presented in this work provides a robust and straightforward method to measure the sugar release after pretreatment and saccharification that can be used as a biomass feedstock screening tool. We demonstrated the utility of the assay by identifying correlations between feedstock composition and reactivity in a population of 150 samples.

4.
Appl Biochem Biotechnol ; 168(2): 421-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22847186

RESUMO

Enzymatic conversion of oligomeric xylose and insoluble xylan remaining after effective pretreatment offers significant potential to improve xylan-to-xylose yields while minimizing yields of degredation products and fermentation inhibitors. In this work, a commercial enzyme cocktail is demonstrated to convert up to 70 % of xylo-oligomers found in dilute acid-pretreated hydrolyzate liquor at varying levels of dilution when supplemented with accessory enzymes targeting common side chains. Commercial enzyme cocktails are also shown to convert roughly 80 % of insoluble xylan remaining after effective high-solids, dilute acid pretreatment.


Assuntos
Ácidos/química , Xilanos/química , Zea mays/química , Aspergillus niger/enzimologia , Endo-1,4-beta-Xilanases/metabolismo , Hidrólise , Folhas de Planta/química , Caules de Planta/química , Solubilidade , Xilose/química
5.
Appl Biochem Biotechnol ; 155(1-3): 418-28, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19142588

RESUMO

Pretreatment experiments were carried out to demonstrate high xylose yields at high solids loadings in two different batch pretreatment reactors under process-relevant conditions. Corn stover was pretreated with dilute sulfuric acid using a 4-l Steam Digester and a 4-l stirred ZipperClave reactor. Solids were loaded at 45% dry matter (wt/wt) after sulfuric acid catalyst impregnation using nominal particle sizes of either 6 or 18 mm. Pretreatment was carried out at temperatures between 180 and 200 degrees C at residence times of either 90 or 105 s. Results demonstrate an ability to achieve high xylose yields (>80%) over a range of pretreatment conditions, with performance showing little dependence on particle size or pretreatment reactor type. The high xylose yields are attributed to effective catalyst impregnation and rapid rates of heat transfer during pretreatment.


Assuntos
Ácidos Sulfúricos/química , Xilose/biossíntese , Zea mays/metabolismo , Reatores Biológicos , Biotecnologia , Tamanho da Partícula , Temperatura , Zea mays/química
6.
Bioresour Technol ; 99(15): 7354-62, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17616458

RESUMO

Agricultural and herbaceous feedstocks may contain appreciable levels of sucrose. The goal of this study was to evaluate the survivability of sucrose and its hydrolysis products, fructose and glucose, during dilute sulfuric acid processing at conditions typically used to pretreat lignocellulose biomass. Solutions containing 25g/l sucrose with 0.1-2.0% (w/w) sulfuric acid concentrations were treated at temperatures of 160-200 degrees C for 3-12min. Sucrose was observed to completely hydrolyze at all treatment conditions. However, appreciable concentrations of fructose and glucose were detected and glucose was found to be significantly more stable than fructose. Different mathematical approaches were used to fit the kinetic parameters for acid-catalyzed thermal degradation of these sugars. Since both sugars may survive dilute acid pretreatment, they could provide an additional carbon source for production of ethanol and other bio-based products.


Assuntos
Biomassa , Lignina/química , Sacarose/química , Frutose/química , Glucose/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Químicos , Soluções
7.
Appl Biochem Biotechnol ; 113-116: 1139-59, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15054259

RESUMO

Over the past three decades ethanol production in the United States has increased more than 10-fold, to approx 2.9 billion gal/yr (mid-2003), with ethanol production expected to reach 5 billion gal/yr by 2005. The simultaneous coproduction of 7 million t/yr of distiller's grain (DG) may potentially drive down the price of DG as a cattle feed supplement. The sale of residual DG for animal feed is an important part of corn dry-grind ethanol production economics; therefore, dry-grind ethanol producers are seeking ways to improve the quality of DG to increase market penetration and help stabilize prices. One possible improvement is to increase the protein content of DG by converting the residual starch and fiber into ethanol. We have developed methods for steam explosion, SO2, and dilute-sulfuric acid pretreatment of DG for evaluation as a feedstock for ethanol production. The highest soluble sugar yields (approximately 77% of available carbohydrate) were obtained by pretreatment of DG at 140 degrees C for 20 min with 3.27 wt% H2SO4. Fermentation protocols for pretreated DG were developed at the bench scale and scaled to a working volume of 809 L for production of hydrolyzed distiller's grain (HDG) for feeding trials. The pretreated DG was fermented with Saccharomyces cerevisiae D5A, with ethanol yields of 73% of theoretical from available glucans. The HDG was air-dried and used for turkey-feeding trials. The inclusion of HDG into turkey poult (as a model non-ruminant animal) diets at 5 and 10% levels, replacing corn and soybean meal, showed weight gains in the birds similar to controls, whereas 15 and 20% inclusion levels showed slight decreases (-6%) in weight gain. At the conclusion of the trial, no negative effects on internal organs or morphology, and no mortality among the poults, was found. The high protein levels (58-61%) available in HDG show promising economics for incorporation of this process into corn dry-grind ethanol plants.


Assuntos
Álcoois/química , Ração Animal , Biotecnologia/métodos , Grão Comestível/química , Fontes Geradoras de Energia , Ácidos/química , Bebidas Alcoólicas , Animais , Carboidratos/química , Etanol/química , Fermentação , Hidrólise , Proteínas/química , Saccharomyces cerevisiae/metabolismo , Ácidos Sulfúricos/química , Perus
8.
Biotechnol Prog ; 18(4): 734-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12153306

RESUMO

Cost reductions for pretreatment and bioconversion processes are key objectives necessary to the successful deployment of a bioethanol industry. These unit operations have long been recognized for their impact on the production cost of ethanol. One strategy to achieve this objective is to improve the pretreatment process to produce a pretreated substrate resulting in reduced bioconversion time, lower cellulase enzyme usage, and/or higher ethanol yields. Previous research produced a highly digestible pretreated yellow poplar substrate using a multistage, continuously flowing, very dilute sulfuric acid (0.07% (w/v)) pretreatment. This process reduced the time required for the bioconversion of pretreated yellow poplar sawdust to ethanol. This resulted in a substantially improved yield of ethanol from cellulose. However, the liquid volume requirements, steam demand, and complexity of the flow-through reactor configuration were determined to be serious barriers to commercialization of that process. A reconfigured process to achieve similar performance has been developed using a single-stage batch pretreatment followed by a separation of solids and liquids and washing of the solids at a temperatures between 130 and 150 degrees C. Separation and washing at the elevated temperature is believed to prevent a large fraction of the solubilized lignin and xylan from reprecipitating and/or reassociating with the pretreated solids. This washing of the solids at elevated temperature resulted in both higher recovered yields of soluble xylose sugars and a more digestible pretreated substrate for enzymatic hydrolysis. Key operating variables and process performance indicators included acid concentration, temperature, wash volume, wash temperature, soluble xylose recovery, and performance of the washed, pretreated solids in bioconversion via simultaneous saccharification and fermentation (SSF). Initial results indicated over a 50% increase in ethanol yield at 72 h for the hot washed material as compared to the control (no washing, no separation) and a 43% reduction of in the bioconversion time required for a high ethanol yield from cellulose


Assuntos
Reatores Biológicos , Biotecnologia/métodos , Celulose/metabolismo , Etanol/metabolismo , Temperatura Alta , Árvores , Biomassa , Fontes Geradoras de Energia , Fermentação , Hidrólise , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...